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ABSTRACT

Fast parallel matrix multiplication algorithms in SIMD
(single~Instruction-Multiple data) and MIMD (Multiple-Instruction- ﬂ

Multiple~data) modes are described for implementation in a
parallel-binary matrix processing system with facilities for
bit-wise parallel Boolean operations and power-of-two shifts {3
on Boolean matrices. A comparative study of these algorithms
is made on the basis of their relative time-complexities, when ]
conventional binary and prime-modulus arithmetic are used for
forming the matrix product.
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1. Introduction

The object of this paper is to de;cribe fast parallel algo-
rithms for multiplying matrices of arbitrary sizes having inte- é
ger elements of arbitrary magnitude. These algorithms are %
based on the earlier work of Klette [3] but attempts are made i
to improve them by the use of modular arithmetic for computa-
tion. The use of modular arithmetic in effect improves the algo-
rithms in [3] when the matrix product has elements which are
very high precision numbers of the order of 2® (or e bits). It s :
is shown that if two matrices of size (mxm) are multiplied, and {
we choose r prime numbers ki each of precision e; bits, the
time taken is as follows:

Single~instruction-multiple-data algorithm

r
2, m(e logm + I e?)),

: i

i=1
Multiple-instruction-multiple-data algorithm
1

O(re

O(log r log e + (log em) (max log ei)).
i

Since matrix multiplication is an important operation for

realizing matrix transformations and inversions of matrices
[7,12] it is believed that the present approach will have prac-
tical utility.

The organization of this paper is as follows: Section 2

describes the basic principle of the parallel matrix multiplication

1Logarit}ns are always taken to the base 2. ] 5
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] algorithms; Section 3 expiains the design features of a ,
' parallel processor for bit-wise computation; the time com- §
plexity of the various possible schemes are discussed in ' %

Section 4; the use of fast multiplication schemes for further
speedup is considered in Section 5; finally, the speedup that

| can result by the use of modular arithmetic is described in

Section 6.
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2. Principle and definitions

We denote the two matrices A = (aij) and B = (bij) ofvsize
(kxm) and (mxn) respectively. Our aim is to compute A+<B of
size kxn with elements
pglaipbpj for 3 = 3.2 ik, 3.3 1,200,005
By 'parallel' we mean that the operations transform the operand
matrix as if all the matrix elements were processed simultaneously.
For the practical realization of such a scheme we can think of
fiber optics (10] or CCD techniques (8].

We now describe the principal idea of our algorithm:

Let C[p] denote a (kxn) matrix in which all the columns are
identical with the p-th column of the matrix A; let R[p] denote
a (kxn) matrix in which all the rows are identical with the p-th
row of the matrix B. For two matrices C and R of the same size

kxn, let

*R = 3 s %
. 0 s%e3 1 w 1,2, 0k, § = 1,2,..0.,0

be the modified product of these two matrices C and R. It im;

mediately follows that

m
Lemma: A-B = I C[pl*R[p].
p=1

We illustrate this lemma by an example in Figure 1.

This lemma can be used for parallel computation of A-B,

either in SIMD (single-instruction-multiple-data) mode or MIMD
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(multiple-instruction-multiple~data) mode, using Flynn's (1]

notation. 1In writing these algorithms we use an Algol-~-like
notation for brevity.
(1) SIMD mode.

Algorithm PS
begin matrices A,8,C,R,A"B;

integer m,p;
initialize A°*B identical 0;

for p = 1 step 1 until m do

C = C[p)] using A, and R = R[p] using B;

C = C*R;

A*B = A-B+C

od;

end
Remark: This algorithm involves m steps of computation, each
with one construction of C(p] and R[p], one modified matrix pro-
duct, and one matrix addition. If we regard these as primitive
operations, we obtain A.B in SIMD mode in O(m) operations. This
algorithm was described in Klette [3].
(2) MIMD mode.

For realization in this mode, it is assumed that m is an in-

tegral power of 2; where it is not we assume log m is replaced by

its higher integral part in the algorithm described below.
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Algorithm PM
begin matrices A,B8,C[1],...,C[m],R[1]),...,R[m];

integer m,p,i;

for p = 1 step 1 until m do in parallel

compute C[p],R[p] using A, B, respectively;
Clpl = Clpl*R(p];
od;

for i = 1 step 1 until log m do

for p = 1 step 2! until m-1 do in parallel

Clpl = Clp] + Clp+2i~1y;

od;
od;

end

Remark: In this algorithm we first perform in one step the

construction of C[p] and R(p] and one modified matrix product

for p =1,2,...,m in parallel. Then we compute in log m steps

4 of parallel matrix addition the desired sum ? Clp] = A°B in
}1 the matrix field C[l]. Assuming that these g:i primitive in-
structions for a certain MIMD computer, A*B can be computed ir
O(log m) steps.

In the next section we will explain how to de ise a parallel

processor for bit-wise computation in order to realize the

operations used in the algorithms PS and PM.
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3. Parallel processor for bit-wise computation

We assume that the elements of the matrices A and B are
integers from the set 0,1,2,...,Ze-l for e2l. (Note that
this does not restrict the choice of negative numbers as ele-
ments of A and B, as complement notation can be used.) Then
each matrix A (or B) can be encoded in a bijective manner
through a sequence of e Boolean matrices A _,,A _,/---/8; of
the same dimensions as A, where

Ae_l(i,j) Ae_z(i,j) % o5 Ao(i,j)
is the positional binary representation of the elements, viz.,
A(i,]j) = aij"' In other words, the matrices Ae-l’Ae-Z""'Ao
represent the bit planes of the matrix A. For illustration, an

example is provided below:

Let A = [12 1?, ; then

A4A3A2A1Ao’Bc1)] Bg Bg Bi Bﬂ

It is clear that using such a positional-additive decompo-
sition, the matrix operations (such as add, multiply) can be
realized using Boolean operations and shifts on sequences of
such Boolean matrices.
(1) Addition in SIMD mode.

Let A _1/A _oreerdy apd Bg_1¢Bgupr - +By be binary
matrix sequences of same dimensions. Then the following algo-

rithm [3) performs the matrix addition A+B using Boolean
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operations on the binary matrices (bit-wise parallel) as basic
steps in SIMD mode.

Algorithm AS
begin binary matrices Ao""'Ae-l'Bo”"’Be-l'co""'ce-l'cé'

D, CARRY;

integer e,i;
Co = AOOBO; CARRY = AOABO; i=1;
while i<e do

D = AiQBi; Ci

CARRY = (A;AB,)V(CARRYAD);

= D®CARRY;

i = i+l;

3

Ce = CARRY;
end
Remark: The sequence of the outputs ce’ce-l""’co represents
the result A+B. Using bitwise parallel Boolean operations on
binary matrices this algorithm in SIMD mode has time complexity
O(e).

Note that the basic idea of this matrix addition algorithm
is similar to adding two e-bit numbers in sequential mode.
Figure 2 illustrates this algorithm.

(2) Addition in MIMD mode.
In [9] a SIMD algorithm has been described for adding e-bit

numbers in parallel in O(log e) steps, using parallel-bitwise

Boolean operations and shifts in vector registers. Using this

e T A T B R R A YN
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SIMD algorithm we now give an algorithm in MIMD mode for adding

binary matrices A__,,...,A; and Bg_1s++++By in O(log e) time.

This algorithm is most efficient when e is a power of 2; where
it is not we assume log e is replaced by its higher integral
part in the algorithm described below.

ALGORITHM AM

; : begin binary matrices AO""’Ae-l’BO""’ e—l'co""'ce-l'ce'DO"'"De—l"

F integer e,i,j;

] for i = 0 step 1 until e-1 do in parallel

Ci = Ai/\Bi; Di = AiVBi;

od;

for i = 0 step 1 until log e-1 do

for j = a* step 1 until e-1 do in parallel
Cy = € V(C, i A D.);
e T Ry
D, = D.AD. .i;
oS e = o
od;
od;
Co " Souz!

for i = 1 step 1 until e-1 do in parallel

C; =C,

5t i-1 ® Ai > Bi’

end

Remark: T' Y sequence of the outputs ce’ce-l""’co represents

the result A+B. This algorithm in MIMD mode has O(log e) time




complexity. In Figure 3 we illustrate this algorithm.

(3) Generation of C[p] and R[p] in SIMD mode.

The processes of generating Clpl, p=1,2,...,m and
Ripl, p=1,2,...,m are important operations in our algorithm.
Let A = A_ /A _,r--A, be the mat?ix of size mxm where m is a
power of 2. The following SIMD algorithm computes Ce-17Ce-2""-Co
corresponding to C[l] (see [3]). The algorithm uses power-of-
two shifts of Boolean matrices; such shifts are denoted by «21
(left) +2%(right), +21(up), +21(down) where the shift distance
is 2i. While performing such two-dimensional shifts, the vacated
columns or rows are filled with zeros, and the shifted-out
columns or rows are discarded.

Algorithm CS

begin binary matrices AgreeerB_14CqreeesCyq_qy/M;

integer e,i,j;

in M the leftmost column is identically 1, otherwise M is 0;

i=0;
while i<e do

Ci = AiAM; j=0;
while j<log m do

ST
Ci = CiV(Ci*2 ): 3 j+l;
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Remark: Using bitwise parallel Boolean operations and power-of-
two shifts on binary matrices this algorithm has time complexity
O(e ldg m). The principle of this algorithm is easy to under-
stand, demonstrating the utility of power-of-two shifts using
a divide-and-conquer approach. The construction of matrices
ct2l,...,C[(m],R(1],...,R[m] can be performed within the same
time, using an analogous algorithm.
(4) Generation of C[p] and R[p] in MIMD mode.

The construction of C[l] can be done within time O(log m)
using the following algorithm in MIMD mode.

Algorithm CM

Change i-loop in algorithm CS into a parallel instruction.
Remark: The generation of the matrices C(1l],...,C[m],R[1],...,
R[(m] can be done within time O(log m) in MIMD mode.

(5) Modified matrix product in SIMD mode.

In what follows we shall assume that bit-wise parallel
Boolean operations and power~of-two shifts on Boolean matrices
are basic operations in our computational model. We will call

this model a Parallel Binary Matrix Processing System (PBS).

(For a more detailed description of this model see [3,4,5].)

In this model the size of the matrix registers is restricted to
the original size of the input matrices. In Pratt et al. (9],
however, a similar model for computation is described (with
restrictions on one-dimensional registers) with unrestricted

registers. It is our view that PBS offers a more realistic model




for computation, since programs in the PBS model take linear
space while programs in Pratt/Stockmeyer's model [9] use expo-

nential space for problems such as matrix multiplication.

The essential advantage of PBS for computing the modified
product is that well-known techniques used for computations with
binary numbers can be translated directly to the case of binary-
matrix computations. In fact, using the usual 0(e2) algorithm
for multiplying e-bit numbers, one can realize the modified
matrix product of two matrices Ae—lﬁipz"“'Ao and Be-l'Be-Z""' ! L

B, in time complexity 0(e2) in SIMD mode.

0
Algorithm MS 5

begin binary matrices Aj,...,A _1/BgrecesBg_1/CoreeesCoyo 1/Egrenn i

L) -yEe-l,Do' LI 'De-l'De;

integer e,i,j;
f; Co = AOABO;
for i = 0 step 1 until e-2 do Di-Ai+1AB°; od;

De-l identical 0;

for j=0 step 1 until e-1 do

for i=0 step 1 until e-1l do Ei'AiABj’ od;

addition of De-lDe-z"‘Do and Ee-lEe-Z"‘E using

0
algorithm AS, resulting in D_D__;..-Dyi

CjSDO;

for i=0 step 1 until e-1 do Di'°i+1’ od;

od;

1 o

r i=0 step 1 until e-1l do Ce+i-D. ; od;
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Remark: The sequence c2e-1'c2e-2"'co represents the modified
product A*B. This program runs within time O(ez).
(6) Modified matrix produét in MIMD mode.

In Pratt et al. [9], a SIMD algorithm can be found for
the parallel realization of the multiplication of two e-bit
numbers in O(log e) steps using parallel bitwise Boolean opera-
tions and shifts on vector registers. Using this same basic
idea we can give an algorithm in MIMD mode for computing the modi-
fied multiplication of matrices A ;A _,...A, and B__,B__,...B,
running in time O(log e). This translation can be done in a
manner similar to the method used in algorithm AM: One parallel
operation on vector registers can be translated into one parallel
instruction on sequences of Boolean matrices. Unfortunately,
the resulting MIMD algorithm for PBS requires a very large number
of matrix registers (O(mz)).

Algorithm MM

Translation of the SIMD algorithm for multiplication of
binary numbers in Pratt et al. (9] into MIMD program for PBS.
With this algorithm all operations used in the algorithms PS and

PM are implemented on PBS, either in SIMD mode or in MIMD mode.
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4. Time complexity

In Section 2, we described two basic algorithms for com-
puting the matrix product, one in SIMD mode and one in MIMD
mode. In Section 3 we described two ways to implement these
algorithms on PBS in SIMD and MIMD modes. Thus altogether we
have at least four different ways to.compute the matrix products
in parallel; we will now summarize the time complexity for these
four cases assuming that A and B8 are mxm matrices (with m a
power of two) and that the elements in A and B are from the set
7T T RS S
Case i: The general SIMD algorithm with SIMD implementation on

PBS has time complexity O(m e (log m+ e)).

Case ii: The general SIMD algorithm with MIMD implementation on

PBS has time complexity O(m(log m+log e)).

Case iii: The general MIMD algorithm with SIMD implementation
on PBS has time complexity O(e(log m+e)).

Case iv: The general MIMD algorithm with MIMD implementation on
PBS has time complexity O(log m log e).

In our opinion, Case i is presently a realistic mode for
technical implementation (see [10]). In what follows we refer
to Case i as the single-instruction-multiple-data algorithm. 1In
Section 6 we will use these two approaches and discuss ways to

improve the speed by using residue or modular arithmetic and

other procedures; see Knuth [6] and Krishnamurthy et al. [7].
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| A Since in practical numerical analysis of matrix operations,
the precision of the result is of considerable importance,
: it is necessary to examine whether the time complexity O(e2) |
required for SIMD implementation (Cases i and iii) and O(log e) |
i 0
for MIMD implementation (Cases ii and iv) can be reduced, assum-
ing m to be a constant.
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5. Use of fast multiplication schemes

It is well known (Knuth [6]) that the order-e2 method is

not the Quickest way to multiply e-bit numbers. For example
longel.59

Karatsuba's [2] method involves only e steps using
the conventional sequential implementation. This method leads

to a SIMD algorithm for the modified matrix product on PBS
1.59

ST

running within the same time O(e ). We will call this

algorithm MSK. tl

Algorithm MSK

TRLITRSED A

Translation of Karatsuba's method into a SIMD algorithm

for PBS for the modified product A*B, ;
Remarks: For a detailed description of this and other methods :
for multiplying e-bit numbers, see Knuth [6]. In our view algo-

, rithm MSK is suitable for practical realization and so we will use é

this for our purposes. For Cases (i) and (iii) described in

Section 4, this algorithm leads to the following improvements:

Case i: Time Complexity O(m e logm + m el'sg).

Case iii: Time Complexity O(e log m + el.59).

In the next section we will discuss the application of

residue arithmetic and consider the time complexities for the

SIMD and MIMD algorithmi.

SR TV A S ST ~
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6. Modular arithmetic procedures

Another significant and practical approach to speeding up
the processing time is to use modular or residue or congruence
arithmetic. For discussions of modular arithmetic reference is
made to Knuth [6]; for applications to matrix inversion see
Krishnamurthy et al. ([7].

For this purpose let us assume that A=(aij), B=(bij) are
two mxm matrices with elements in {0,1,2,...,k-1} and that the
product A°B has elements in the same set. (Note that this dif-
fers from our earlier discussions where we develop products in
conventional arithmetic.) Let kl'kz';"'kr be a set of pairwise
relatively prime integers, with k = _Z ki. It is well known
(Chinese remainder theorem) that the;;lis exactly one integer
a which satisfies the conditions

0 sa sk-1and a = aj(mod kj)

for 1 s j = r, for any given sequence (al,az,...,ar) of integers.
Using this result the given matrices A and B can be encoded and
A°B can be computed in modular representation for each kj, and
then combined using the Chinese remainder theorem. Figure 4 gives
an example of multiplying two matrices A and B in this manner.

As illustrated, this procedure involves conversion of A and
B to modular representation modulo each kj' and computation of
A (mod kj)-B(mod kj) mod kj' for 1 s j s r. These results (namely

each element in the product) should then be combined using the

Chinese remainder theorem or other related procedures; see




e ——
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PR

Let k = 30 = 2:3:5; k) = 2, K, = 3, k; = 5.

Step 1l: Matrices A and B are encoded modulo kl'kz'k3'

A(mod 2) = (01 A(mod 3= (20 A(mod 5) = |2 3
10 fi 14

Bmod 2) = |01 B(mod 3= [T 2 B(mod 5) = |40
00 2 1 2 4

Step 2: Product of A(mod ki) and B(mod ki) modulo k.
00 23 i 2
il

Step 3: Product of the result in Step 2 with k/ki for 1 =i s 3,
0 0 20 10 24 12
g

Step 4: Addition of the results in Step 3 modulo k.

14 23] 44
175

Figure 4. Modular approach to matrix product.
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Szabo et al. (11l], Knuth (6], Krishnamurthy et al. [7], Young

et al. [12]. Here we will use a straightforward multiplicative-
additive approach, in which each element of the product

A(mod k) -B{mod k,) mod k; is multiplied by (k/kj)“"j’ (where ¢
denotes Euler's totient function) for 1 £ j £ r and summed
modulo k, as illustrated in Figure 4.

An important aspect in using modular arithmetic is the
choice of kj's suitable for practical implementation. It seems
convenient from a practical design viewpoint that each kj be a
prime of the form (Zej-l), since this would then correspond to
bitwise computation on PBS. (As an example ej mi1253,5,7)

Since we are interested in implementing the modular approach
on PBS, let us describe the general algorithms for implementation
in SIMD and MIMD modes.

Let AiaA(mod ki)’ Bi=B(mod ki) for 1 s i s r.

(1) SIMD mode.

" Algorithm PMS

begin matrices A,B,A*,B*,C,R,D, A-B;

integer m,r,k,kl,...,kr,i,j;
initialize A*B identical 0;

for i = 1 step 1 until r do

production of A’sAi and B‘=Bi using A and B

respectively;

e L O,

for j = 1 step 1 until m do

initialize D identical 0;

v et L e, A e
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C = C[j) using A% and R = R[j] using BY
C = C*R mod k;;
0 = D+C mod ky;
od;
. D= k/ki-v,
E’ A‘B = A-B+D mod k;
; o
end
k Remark: This algorithm has time complexity O(rm), regarding

the operations used as primitive operations.
(2) MIMD mode.

For this purpose we assume that r is a power of 2; where
it is not we assume log r is replaced by its higher integral
part in the algorithm described below.

Algorithm PMM

begin matrices A,B,Al,...,Ar,Bl,...,Br,Cl[l],...,Cr[m],

Rl[l],...,Rr[m]:

integer m,r,k,kl,...,kr,i,j,h;

for i = 1 step 1 until r do in parallel

;ﬁ production of Ai and Bi using A and B respectively;

for j=1 step 1 until m do in parallel

compute Ci[j],Ri[j] using Ai,Bi respectively;
C,[31=C, [31*R; [3] mod k;;

od;

s
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for j=1 step 1 until log m do

for h=1 step 23 until m-1 do in parallel

- =2 ;
C; (n1=C, (R1+C, [h+2777] mod k;

od;
ed;

C;[1)=k/k,;C, [1]:
od;:

for i=1 step 1 until log r do

for j=1 step 2' until r-1 do in parallel

Col11=C [1]+C . . [1] mod k;
2 3 j+2l'l
od;

od;
end
Remark: This algorithm has time complexity O(log m + log r),
regarding the operations used as primitive operations. The out-

put A-B is computed in matrix register Cllll.

Implementation in PBS

We first consider the addition and the modified product
modulo kh’ 1 shsr. According to the well-known techniques
for modular arithmetic (Knuth [6]), for matrices F and G with
elements fij'gij respectively, each with eh-bit lengthe(with
=2 N

bit positions eh-l,eh-z,...,o, the sum F+G modulo kh -1 is

easily obtained thus:

o sy ety
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e
.+g if £, .+g..<2

h

i
£..+g. . (mod k,) = { e e #3733
LA a ((£;4+9;j)mod 2 By, otherwise.

This operation is easy to perform on PBS: after the usual
addition operation, the most significant bit plane, correspond-
ing to bit position eh,is added to the bit planes eh-l, eh-z,...,o.
In other words, the addition modulo kh needs twice the time of
addition of two e, -bit matrices, i.e. O(e,) in SIMD mode if we
use algorithm AS, and O(log eh) in MIMD mode if we use algorithm
AM.

For obtaining the elements of the modified product F*G

{mod kh), the rule is:
e

e
. o s h - h
fij gij(mod ky) = (fij 944 mod 2 ) + lfij g../2 "} (mod kh).

To do this calculation, we perform the modified product of two

ij

eh~bit matrices F and G; then we perform an addition modulo kh
of the first eh+l bit planes and the last ey bit planes. Using
the algorithms MS and AS we can perform this on PBS in time
O(ei) in SIMD mode. Using algorithms MM and AM, the modified
product can be computed in O(log eh) steps in MIMD mode.

Now consider the construction of the matrices Ai (A mod ki)
and Bi (B8 mod ki). For this purpose, we can group together
blocks of e bit planes of a given matrix A. Let these blocks
of bit planes be denoted by the matrices Al,Az,...,At.. Then

we perform the addition

e
AY wA% & .. 4 At mod k; (kg=2 iy




(see Knuth [6]). For this, in SIMD mode we need O(ei(t-l))

= O(ei . 3%5—50 = O(e) steps on PBS if we assume k = 2%, and
i
in MIMD mode we need O(log e; log t) = O(log e; log éi) =

: i !
0(log e; log e - (log ei)z) steps on PBS. |

Finally we consider the operation of matrix addition modulo
k. In the algorithms PMS and PMM we have the operations
A-B

A-B+D mod k, and

Cj[1] Cj[ll +C ;. [1] mod k.

j+2
To explain this, at each step of the operation, we first perform
the (usual) addition and then we subtract from each element in
parallel the value k; if the result is negative we retain the
element value, otherwise we retain the subtracted result as the
new value of the element. This is because of the fact that each

element mod ki when multiplied by k/ki can be in the range

0,1,...,k-1 and so when the elements are added modulo k the

result can lie in the range 0,1,...,2k-2. For implementation

on PBE, note that in the resulting matrix after the subtraction,
an overflow appears in the most significant bit plane in all
places where the value after the addition was greater than k, i

and vice versa. We use this most significant bit plane as a mask

for the decision between the original value and the subtracted

value, for all log k bit planes. Altogether, the matrix addition

modulo k used in the algorithms PMS and PMM can be performed on
PBS within time O(log k) = O(e) in SIMD mode, and within time

O(log e) in MIMD mode.




We will now summarize the time complexity for the SIMD
and MIMD algorithms using modular arithmetic. For the algo-
rithm PMS in SIMD implementation we have the time

O(re2 + m(e log m + ; e?))
i=1 *
For the algorithm PMM in MIMD implementation we have the time

O(log r log e + (log em) (max log ei))
i

A comparison of the time needed for the SIMD algorithms here
and in Section 4 shows that modular arithmetic is to be pre-
ferred when e is large (high precision) and m is greater than
r. The comparison of the needed time for the MIMD algorithms
here and in Section 5 also indicates that modular arithmetic

is to be preferred when m is greater than max re, .
.
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- 7. Concluding remarks 1
> g |
We have presented several fast parallel matrix multipli- g
cation algorithms in this paper. Some of these algorithms can ?
be speeded up further when the computations involve certain é
kinds of structured matrices. Such structured matrices, as we !
know, arise in practical problems involving various kinds of j
transformations needed in matrix computations, e.g. elementary, f
£
orthogonal transformations. This will be a fruitful area for
further study. -
i
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